leaf6.jpg
© c

Publikationen


Alle Publikationen findet man unter:  https://scholar.google.de/citations?user=jJUrtqIAAAAJ&hl=de

  • Lara MV, Maurino VG, Andreo CS and Drincovich MF (2015) Method to induce growth and/or early flowering in plants. AR072885B1.
  • Maurino VG and Flügge U-I (2008) Means for improving agrobiological traits in a plant by providing a plant cell comprising in its chloroplasts enzymatic activities for converting glycolate into malate. EP08151759.1-1212.
  • Flügge U-I and Maurino VG (2008) Improving salt tolerance. A plant cell comprising enzymatic activities for converting glyoxylate to glycerate. EP08160030.6-2405.
  • Balparda M, Kerim A, Bouzid M, Alvarez CE, Alseekh S, Fernie AR, Maurino VG (2003), "Natural variation in Arabidopsis thaliana identifies GlyoxalaseI;2 as key for the detoxification of glucose-derived reactive carbonyl species". bioRxiv, Link
  • Giese J, Eirich J, Walther D, Zhang Y, Lassowskat I, Fernie AR, Elsässer M, Maurino VG, Schwarzländer M, Finkemeier I. (2023), " The interplay of post-translational protein odifications in Arabidopsis leaves during photosynthesis induction." Plant J., Link
  • Alvarez C, and Maurino VG (2023), "Adaptive diversity in structure and function of C4 photosynthetic components." Biochem. Soc. Trans. 51 (3), 1157-1168, Link
  • Balparda M, Bouzid M, Martinez M, Zheng Ke, Schwarzländer M, and Maurino, VG (2023) "Regulation of plant carbon assimilation metabolism by post-translational modifications." Plant J. 5,1059-1079, Link
  • Tessi T, Maurino VG, Shahrairi M, Meissner E, Novak O, Pasternak T, Schumacher B, Ditengou F, Li Z, Duerr J, Flubacher N, Nautscher M, Williams A, Kazimierczak Z, Strnad M, Thumfart J-O, Palme K, Desimone M, Teale W. New Phytol. (2023), "AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response". New Phytol. 238, 1924–1941, Link
  • Balparda M, Schmitz J, Dümmel M, Wuthenow IC, Schmidt M, Alseekh S, Fernie AR, Lercher MJ, and Maurino VG (2023), "Two plant glyoxalase systems with different evolutionary origins detoxify diverse reactive carbonyl species." Plant Physiol. 191, 1214-1233, Link 
  • Balparda M, Schmitz J, Dümmel M, Wuthenow IC, Schmidt M, Alseekh S, Fernie AR, Lercher MJ, Maurino VG (2022), "Viridiplantae-specific GLXI and GLXII isoforms co-evolved and detoxify glucosone in planta". bioRxiv, Link
  • Drincovich MF and Maurino VG (2022), "Adjustments of carbon allocation and stomatal dynamics by target localized strategies to increase crop productivity under changing climates". J Plant Physiol. 272, Link
  • Koschmieder J, Alseekh S, Shabani M, Baltenweck R, Maurino VG, Palme K, Fernie AR, Hugueney P, and Ralf Welschet R (2022), "Color recycling: metabolization of apocarotenoid degradation products suggests carbon regeneration via primary metabolic pathways". Plant Cell Rep., Link
  • Hüdig M, Laibach N, Hein A-C (2022), "Genome Editing in Crop Plant Research—Alignment of Expectations and Current Developments". Plants 11, 212, Link
  • Balparda M, Elsässer M, Badia M, Giese J, Bovdilova A, Hüdig M, Reinmuth L, Eirich J, Schwarzländer M, Finkemeier I, Schallenberg-Rüdinger M, and Maurino VG (2022), "Acetylation of conserved lysines fine-tune mitochondrial malate dehydrogenase activity in land plants". Plant J. 109, 92-111, Link
  • Hüdig M, Tronconi MA, Zubimendi JP, Sage TL, Poschmann G, Bickel D, Gohlke H, and Maurino VG (2022) Respiratory and C4-photosynthetic NAD-malic enzyme coexist in bundle sheath cells mitochondria and evolved via association of differentially adapted subunits. The Plant Cell 34, 597-615, Link
  • Sewelam N, El-Shetehy M, Mauch F, and Maurino VG (2021), "Combined Abiotic Stresses Repress Defense and Cell Wall Metabolic Genes and Render Plants More Susceptible to Pathogen Infection". Plants 10, 1946. Link
  • Hüdig M, Tronconi MA, Zubimendi JP, Sage TL, Poschmann G, Bickel D, Gohlke H, and Maurino VG (2021), "Respiratory and C4-photosynthetic NAD-malic enzyme coexist in bundle sheath cells mitochondria and evolved via association of differentially adapted subunits".  Link
  • Tessi TM, Brumm S, Winklbauer E, Schumacher B, Pettinari G, Lescano CI, González CA, Wanke D, Maurino VG, Harter K, and Desimone M (2021), "Arabidopsis AZG2 transports cytokinins in vivo and regulates lateral root emergence". 
  • Tessi TMShahriari MMaurino VGMeissner ENovak OPasternak TSchumacher BSFlubacher NSNautscher MWilliams AKazimierczak ZStrnad MThumfart JOPalme KDesimone MZ, and Teale WD (2020), "The auxin transporter PIN1 and the cytokinin transporter AZG1 interact to regulate the root stress response". 
  • Balparda M, Elsässer M, Badia M, Giese J, Bovdilova A, Hüdig M, Reinmuth L, Schwarzländer M, Finkemeier I, Schallenberg-Rüdinger M, and Maurino VG (2020), "Plant mitochondrial malate dehydrogenase is post-translationally regulated by lysine acetylation as an evolutionary conserved strategy to modulate its activity". bioRxiv, doi:10.1101/2020.10.30.362046, Link
  • Elsässer M, Feitosa-Araujo E, Lichtenauer S, Wagner S, Fuchs P, Giese J, Kotnik F, Hippler M, Maurino VG, Finkemeier I, Schallenberg-Rüdinger M, and Schwarzländer M (2020), "Photosynthetic activity triggers pH and NAD redox signatures across plant cell compartments". bioRxiv, Link
  • von der Mark C, Ivanov R, Eutebach M, Maurino VG, Bauer P, and Brumbarova T (2020), "Reactive Oxygen Species coordinate the transcriptional responses to iron availability in Arabidopsis". J. Exp. Bot., Link
  • Schmitz J, Hüdig M, Meier D, Linka N, and Maurino VG (2020), "The genome of Ricinus communis encodes a single glycolate oxidase with different functions in photosynthetic and heterotrophic organs". Planta 252, 100, Link
  • Tronconi MA, Hüdig M, Schranz ME, and Maurino VG (2020), "Independent recruitment of duplicated β-subunit-coding NAD-ME genes aided the evolution of C4 photosynthesis in Cleomaceae". Front. Plant Sci., Link
  • Sewelam N, Brilhaus D, Bräutigam A, Alseekh S, Fernie AR, and Maurino VG (2020), "Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes". J. Exp. Bot. 71, 5098–5112, Link
  • Tessi TM, Brumm S, Winklbauer E, Schumacher B, Lescano CI, González CA, Wanke D, Maurino VG,  Harter K, and Desimone M (2020), "Arabidopsis AZG2, an auxin induced putative cytokinin transporter, regulates lateral root emergence". bioRxiv, Link
  • Schmidt A, Mächtel R, Ammon A, Engelsdorf T, Schmitz J, Maurino VG, and Voll L (2020), "Reactive oxygen species dosage in Arabidopsis chloroplasts can improve resistance towards Colletotrichum higginsianum by the activation of WRKY33". New Phytol. 226, 189–204, Link
  • Badia MB, Maurino VG, Pavlovic T, Arias CL, Pagani MA, Andreo CS, Saigo M, Drincovich MF, and Gerrard Wheeler MC (2020), "Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress". Plant J. 101, 653–665, Link
  • Fuchs P, Rugen N, Carrie C, Elsässer M, Finkemeier I, Giese J, Hildebrandt TM, Kühn K, Maurino VG, Ruberti C, Schallenberg-Rüdinger M, Steinbeck J, Braun H-P, Eubel H, Meyer E, Müller-Schüssele SJ, and Schwarzländer M (2020), "Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics". Plant J. 101, 420–441, Link
  • Maurino VG (2019) Using energy-efficient synthetic biochemical pathways to bypass photorespiration. Biochem. Soc. Trans. 47, 1805–1813. Link
  • Bovdilova A, Alexandre BA, Höppner A, Luís IM, Alvarez CE, Bickel D, Gohlke H, Decker C, Nagel-Steger L, Alseekh S, Fernie AR, Drincovich MF, Abreu IA, and Maurino VG (2019) Posttranslational modification of the NADP-malic enzyme involved in C4 photosynthesis fine-tunes the enzymatic activity during the day. Plant Cell 31, 2525–2539. Link
  • Sewelam N, Kazan K, Hüdig M, Maurino VG, and Schenk PM (2019) The AtHSP17.4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ROS and can be a useful molecular marker for oxidative stress. Int. J. Mol. Sci. 20, 3201. Link
  • Alvarez CE, Bovdilova A, Höppner A, Wolff C-C, Saigo M, Trajtenberg F, Zhang T, Buschiazzo A, Nagel-Steger L, Drincovich MF, Lercher MJ, and Maurino VG (2019) Molecular adaptations of NADP-malic enzyme for its function in C4 photosynthesis in grasses. ‌‌‌‌‌‌‌Nature Plants 5, 755–765. Link
  • Yazdanpanah F, Maurino VG, Mettler-Altmann T, Buijs G, Bailly M, Jashni MK, Willems L, Sergeeva LI, Rajjou L, Hilhorst HWM, and Bentsink L (2019) NADP-MALIC ENZYME 1 affects germination after seed storage in Arabidopsis thaliana. Plant Cell Physiol. 60, 318–328. Link
  • Saigo M, Arias CL, Pavlovic T, Torcolese G, Badia MB, Gismondi M, Maurino VG, Andreo CS, Drincovich MF, and Gerrard Wheeler MC (2018) NADP-Dependent Malic Enzyme 1 participates in the abscisic acid response in Arabidopsis thaliana. Front. Plant Sci. 9:1637. doi:10.3389/fpls.2018.01637 Link
  • Schmitz J, Rossoni AW, and VG Maurino VG (2018) Dissecting the physiological function of plant glyoxalase I and glyoxalase I-like proteins. Front. Plant Sci. 9:1618. doi:10.3389/fpls.2018.01618 Link
  • Arias C, Pavlovic T, Torcolese G, Badia M, Gismondi M, Maurino VG, Andreo C, Drincovich M, Gerrard Wheeler M, and Saigo M (2018) NADP-dependent malic enzyme 1 participates in the abscisic acid response in Arabidopsis thaliana. bioRxiv 348771 doi: 10.1101/348771 Link
  • Hüdig M, Schmitz J, Engqvist MKM, and Maurino VG (2018) Biochemical control systems for small molecule damage in plants. Plant Signal. Behav. 13, e1477906. doi:10.1080/15592324.2018.1477906 Link
  • Müller GL, Lara MV, Oitaven P, Andreo CS, Maurino VG, and Drincovich MF (2018) Improved water use efficiency and shorter life cycle of Nicotiana tabacum due to modification of guard and vascular companion cells. Sci. Rep. 8, 4380. doi: 10.1038/s41598-018-22431-5 Link
  • Racca S, Welchen E, Gras DE, Tarkowská D, Turečková V, Maurino VG, and Gonzalez DH (2018) Interplay between cytochrome c and gibberellins during Arabidopsis vegetative development. Plant J. 94, 105–121. Link
  • Schmitz J, Dittmar IC, Brockmann JD, Schmidt M, Hüdig M, Rossoni AW and Maurino VG (2017) Defense against reactive carbonyl species involves at least three subcellular compartments where individual components of the system respond to the cellular sugar status. Plant Cell 29,  Link
  • Dourado H, Maurino VG and Lercher MJ (2017) Enzymes and substrates are balanced at minimal combined mass concentration in vivo. bioRxiv, 128009. Link
  • Schmitz J, Srikanth NV, Hüdig M, Poschmann G, Lercher MJ and Maurino VG (2017) The ancestors of diatoms evolved a unique mitochondrial dehydrogenase to oxidize photorespiratory glycolate. Photosynth. Res. 132, 183–196. Link
  • Badia MB, Mans R, Lis AV, Tronconi MA, Arias CL, Maurino VG, Andreo CS, Drincovich MF, van Maris AJA and Gerrard Wheeler MC (2017) Specific Arabidopsis thaliana malic enzyme isoforms can provide anaplerotic pyruvate carboxylation function in Saccharomyces. FEBS Journal 284, 654–665. Link
  • Engqvist MKM, Maurino VG (2017) Metabolic Engineering of Photorespiration. In: Fernie A, Bauwe H, Weber A. (eds) Photorespiration. Methods in Molecular Biology, vol 1653. Humana Press, New York, NY
  • Li Y,  Heckmann D, Lercher MJ and Maurino VG (2017) Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants. J. Exp. Bot. 68, 117–125. Link
  • Matsubara S, Schneider T and Maurino VG (2016) Dissecting long-term adjustments of photoprotective and photo-oxidative stress acclimation occurring in dynamic light environments. Front. Plant Sci. 7:1690. doi:10.3389/fpls.2016.01690 Link
  • Drincovich MF, Voll LM and Maurino VG (2016) On the diversity of roles of organic acids. Front. Plant Sci. 7:1592. doi:10.3389/fpls.2016.01592 Link
  • Welchen E, Schmitz J, Fuchs P, García L, Wagner S, Wienstroer J, Schertl P, Braun HP, Schwarzländer M, Gonzalez DH and Maurino VG (2016) D-Lactate dehydrogenase links methylglyoxal degradation and electron transport through cytochrome c. Plant Physiol. 172, 901–912. Link
  • Lehmann MM, Wegener F, Barthel M, Maurino VG, Siegwolf RTW, Buchmann N, Werner C and Werner RA (2016) Metabolic fate of the carboxyl groups of malate and pyruvate and their influence on δ13C of leaf respired CO2 during light enhanced dark respiration. Front. Plant Sci. 7:739. doi:10.3389/fpls.2016.00739 Link
  • Hagemann M, Kern R, Maurino VG, Hanson DT, Weber APM, Sage RF and Bauwe H (2016) Evolution of photorespiration from cyanobacteria to land plants considering protein phylogenies and acquisition of carbon concentrating mechanisms. J. Exp. Bot. 67, 2963–2976. Link
  • Dellero Y, Jossier M, Schmitz J, Maurino VG and Hodges M(2016) Photorespiratory glycolate-glyoxylate metabolism. J. Exp. Bot. 67, 3041–3052. Link
  • Pires MV, Júnior AAP, Medeiros DB, Daloso DM, Pham PA, Barros KA, Engqvist MKM, Florian A, Krahnert I, Maurino VG, Araújo WL and Fernie AR (2016) The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant Cell Environ. 39, 1304–1319. Link
  • Badia MB, Arias CL, Tronconi MA, Maurino VG, Andreo CS, Drincovich MF and Gerrard Wheeler MC (2015) Enhanced cytosolic NADP-ME2 activity in A. thaliana affects plant development, stress tolerance and specific diurnal and nocturnal cellular processes. Plant Sci. 240, 193–203. Link
  • Maurino VG and Engqvist MKM (2015)  2-Hydroxy Acids in Plant Metabolism. The Arabidopsis Book 11:e0182. doi:10.1199/tab.0182 Link
  • Engqvist MKM, Schmitz J, Gertzmann A, Florian A, Jaspert N, Arif M, Balazadeh S, Mueller-Roeber B, Fernie AR and Maurino VG (2015) GLYCOLAT OXIDASE3, a glycolate oxidase homologue of yeast L-lactate cytochrome c oxidorreductase, supports L-lactate oxidation in roots of Arabidopsis thaliana. Plant Physiol. 169, 1042–1061. Link
  • Hüdig M, Maier A, Scherrers I, Seidel L, Jansen EEW, Mettler-Altmann T, Engqvist MKM and Maurino VG (2015) Plants Possess a Cyclic Mitochondrial Metabolic Pathway similar to the Mammalian Metabolic Repair Mechanism Involving Malate Dehydrogenase and L-2hydroxyglutarate Dehydrogenase. Plant Cell Physiol. 56,1820–1830. Link 
  • Soto D, Córdoba JP, Villarreal F, Bartoli C, Schmitz J, Maurino VG, Braun HP, Pagnussat GC and Zabaleta E (2015) Functional characterization of double mutants defective in complex I integrated carbonic anhydrases in Arabidopsis thaliana. Plant J. 85, 831–844. Link
  • Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG and Kramer DM (2015) Activation of Cyclic Electron Flow by Hydrogen Peroxide in vivo. PNAS 112, 5539–5544. Link
  • Peter S, Zell MB, Blum C, Stuhl A, Elgass K, Sackrow M, Subramaniam V, Meixner AJ, Harter K, Maurino VG and Schleifenbaum FE (2014) Photosynthesis in a different light: Spectro-microscopy for in vivo characterization of chloroplasts. Front. Plant Sci. 5:292.  Link
  • Sewelam N, Jaspert N, Van Der Kelen K, Tognetti VB, Schmitz J, Frerigmann H, Stahl E, Zeier J, Van Breusegem F and Maurino VG (2014) Spatial H2O2 Signalling Specificity: H2O2 from Chloroplasts and Peroxisomes Modulates the Plant Transcriptome Differentially. Mol. Plant 7, 1191–1210. Link
  • Engqvist MKM, Eßer C, Maier A, Lercher MJ and Maurino VG (2014) Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion 19, 275–281. Link
  • Esser C, Kuhn A, Groth G, Lercher MJ and Maurino
VG (2014) Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases. Mol. Biol. Evol. 31, 1089–1101. Link
  • Raliya R, Tarafdar JC, Singh SK, Gautam R, Gulecha K, Choudhary K, Maurino VG and Saharan V (2014) MgO nanoparticle biosynthesis and its effect on chlorophyll contents in the leaves of Clusterbean (Cyamopsis tetragonoloba L.). Adv. Sci. Eng. Med. 6, 538–545. Link
  • Kuhn A, Engqvist MKM, Jansen E, Weber A, Jakobs C and Maurino VG (2013) D-2-hydroxyglutarate metabolism is linked to photorespiration in the shm1-1 mutant. Plant Biol. 15, 776–784. Link
  • Peterhansel C, Krause K, Braun H, Espie G, Fernie A, Hanson D, Keech O, Maurino VG, Mielewczik M and Sage R (2013) Engineering photorespiration: Current state and future possibilities. Plant Biol. 15, 754–758. Link
  • Balazadeh S,Jaspert N, Arif M, Mueller-Roeber B and Maurino VG (2012) Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts. Front. Plant Sci. 3:234. doi:10.3389/fpls.2012.00234. Link
  • Maurino VG and Weber APM (2012) Engineering photosynthesis in plants and synthetic microorganisms. J. Exp. Bot. 64, 743–751. Link
  • Voll LM, Zell MB, Engelsdorf T, Saur A, Gerrard Wheeler M, Drincovich MF, Weber APM and Maurino VG (2012) Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis is associated with enhanced susceptibility towards Colletotrichum higginsianum. New Phytol. 195, 189–202. Link
  • Wienstroer J, Engqvist MKM, Kunz HH, Flügge UI and Maurino VG (2012) D-Lactate dehydrogenase as a marker gene allows positive selection of transgenic plants. FEBS Lett. 586, 36–40. Link
  • Maier A, Fahnenstich H, von Caemmerer S, Engqvist MKM, Weber AP, Flügge UI and Maurino VG (2012) Glycolate oxidation in A. thaliana chloroplasts improves biomass production. Front. Plant Sci. 3:38. doi:10.3389/fpls.2012.00038  Link 
  • Oelze ML, Vogel MO, Alsharaf K, Viehhauser A, Maurino VG and Dietz KJ (2011) Efficient acclimation of the chloroplast antioxidant defense of Arabidopsis thaliana leaves in response to a 10- or 100-fold light increment. J. Exp. Bot. 63, 1297–1313. Link
  • Maier A, Zell M and Maurino VG (2011) Malate decarboxylases: evolution and roles of NAD(P)-ME isoforms in species performing C4 and C3 photosynthesis. J. Exp. Bot. 62, 3061–3069. Link
  • Engqvist MKM, Kuhn A, Wienstroer J, Weber K, Jansen EEW, Jakobs C, Weber APM and Maurino VG (2011) Plant D-2-hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence. J. Biol. Chem. 286, 11382–11390.  Link
  • Peterhansel C and Maurino VG (2011) Photorespiration redesigned. Plant Physiol. 155, 49–55. Link
  • Tronconi MA, Gerrard Wheeler MC, Maurino VG, Drincovich MF and Andreo CS (2010) NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control. Biochem J. 430, 295–303. Link 
  • Maurino VG and Peterhansel C (2010) Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol. 13, 249–255. Link 
  • Tronconi MA, Maurino VG, Andreo CS and Drincovich MF (2010) Three Different and Tissue-specific NAD-Malic Enzymes Generated by Alternative Subunit Association in Arabidopsis thaliana. J. Biol. Chem. 285, 11870–11879. Link
  • Zell MB, Fahnenstich H, Maier A, Saigo M, Voznesenskaya EV, Edwards GE, Schleifenbaum F, Zell C, Andreo C, Drincovich MF and Maurino VG (2010) Analysis of Arabidopsis with highly reduced levels of malate and fumarate sheds light on the role of these organic acids as storage carbon molecules. Plant Physiol. 152, 1251–1262. Link
  • Drincovich MF, Lara MV, Maurino VG and Andreo CS (2010) Evolution of C4 decarboxylases: Different solutions for the same biochemical problem: provision of CO2 in Bundle Sheath Cells. In: C4 photosynthesis and related CO2 concentration mechanisms; Advances in Photosynthesis and Respiration (AIPH) Series. Series Editor: Govindjee S. pp 277–300.
  • Brown NJ, Palmer BJ, Stanley S, Hajaji H, Astley HM, Parsley K, Kaisa Kajala K, Quick WP, Trenkamp S, Fernie AR, Maurino VG and Hibberd JM (2010) C4 acid decarboxylases required for C4 photosynthesis are active in the mid-vein of the C3 species Arabidopsis thaliana, and are important in sugar and amino acid metabolism. Plant J. 61, 122–133. Link
  • Gerrard Wheeler MC, Arias CL, Maurino VG, Andreo CS, Drincovich MF (2009) Identification of domains involved in the allosteric regulation of cytosolic Arabidopsis thaliana NADP-malic enzymes. FEBS J. 276, 5665–5677. Link
  • Engqvist MKM, Drincovich MF, Flügge UI and Maurino VG (2009) Two D-2-Hydroxy-acid Dehydrogenases in Arabidopsis thaliana with Catalytic Capacities to Participate in the Last Reactions of the Methylglyoxal and β-Oxidation Pathways. J. Biol. Chem. 284, 25026–25037. Link
  • Maurino VG, Gerrard Wheeler MC, Andreo CS and Drincovich MF (2009) Redundancy is sometimes seen only by the uncritical: Does Arabidopsis need six malic enzyme isoforms? Plant Sci. 176, 715–721. Link
  • Fahnenstich H, Flügge UI, Maurino VG (2008) Arabidopsis thaliana overexpressing glycolate oxidase in chloroplasts: H2O2-induced changes in primary metabolic pathways. Plant Signal. Behav. 3, 1122–1125. Link
  • Maurino VG and Flügge UI (2008) Experimental systems to assess the effects of reactive oxygen species in plant tissues. Plant Signal. Behav. 3, 919–924. Link
  • Fahnenstich H, Scarpeci TE, Valle EM, Flügge UI and Maurino VG (2008) Generation of H2O2 in chloroplasts of Arabidopsis thaliana overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol. 148, 719–729. Link
  • Detarsio E, Maurino VG, Alvarez CE, Müller GL, Andreo CS and Drincovich MF (2008) Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and young root. Plant Mol. Biol. 68, 355. Link
  • Gerrard Wheeler M, Arias CL, Tronconi MA, Maurino VG, Andreo CS and Drincovich MF (2008) Arabidopsis thaliana NADP-malic enzyme isoforms: high degree of identity but clearly distinct properties. Plant Mol. Biol. 67, 231–242. Link
  • Tronconi MA, Fahnenstich H, Gerrard Wheeler M, Andreo CS, Flügge UI, Drincovich MF and Maurino VG (2008) Arabidopsis thaliana NAD-malic enzyme functions as homodimer and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol. 146, 1540–1552. Link
  • Fahnenstich H, Saigo M, Andreo CS, Drincovich MF, Flügge UI and Maurino VG (2008) Malate and fumarate emerge as key players in primary metabolism: Arabidopsis thaliana overexpressing C4-NADP-ME offer a way to manipulate the levels of malate and to analyse the physiological consequences. In: Photosynthesis. Energy from the Sun (Allen JF, Gantt E, Golbeck JH and Osmond B, eds). Springer-Verlag, Heidelberg, Germany. Link
  • Gerrard Wheeler M, Arias CL, Tronconi MA, Maurino VG, Flügge UI, Andreo CS and Drincovich MF (2008) Structure-function relationship studies of the four Arabidopsis thaliana NADP-malic enzyme isoforms. In: Photosynthesis. Energy from the Sun. (Allen JF, Gantt E, Golbeck JH and Osmond B, eds). Springer-Verlag, Heidelberg, Germany. Link
  • Fahnenstich H, Saigo M, Niessen M, Zanor MI, Andreo CS, Fernie A, Drincovich MF, Flügge UI and Maurino VG (2007) Alteration of organic acid metabolism in Arabidopsis thaliana overexpressing the maize C4-NADP-malic enzyme causes accelerated senescence during extended darkness. Plant Physiol. 145, 640–652. Link
  • Maurino VG, Grube E, Zielinski J, Schild A, Fischer K and Flügge UI (2006) Identification and expression analysis of twelve members of the Nucleobase-Ascorbate Transporter (NAT) gene family in Arabidopsis thaliana. Plant Cell Physiol. 48, 1381–1393. Link
  • Gerrard Wheeler M, Tronconi M, Drincovich MF, Andreo CS, Flügge UI and Maurino VG (2005). A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis thaliana. Plant Physiol. 139, 39–51. Link
  • Lara MV, Drincovich MF, Müller GL, Maurino VG and Andreo CS (2005) NADP-malic enzyme and Hsp70: co-purification of both proteins and modification of NADP-malic enzyme properties by association with Hsp70. Plant Cell Physiol. 46, 997–1006. Link
  • Saigo M, Bologna F, Maurino VG, Detarsio E, Andreo CS and Drincovich MF (2004) Maize recombinant non-C4 NADP-malic enzyme: A novel dimeric malic enzyme with high specific activity. Plant Mol. Biol. 55, 97–107. Link
  • Eicks M, Maurino VG, Knappe S, Flügge UI, and Fischer K (2002) The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants. Plant Physiol. 128, 512–522. Link
  • Maurino VG, Saigo M, Andreo CS and Drincovich MF (2001) Non-photosynthetic malic enzyme from maize: a constitutively expressed enzyme that responds to plant defence inducers. Plant Mol. Biol. 45, 409–420. Link
  • Maurino VG, Drincovich MF, Casati P, Andreo CS, Ku M, Gupta S, Edwards G and Franceschi V (1997) NADP-malic enzyme: Immunolocalization in different tissues of the C4 plant maize and the C3 plant wheat. J. Exp. Bot. 48, 799–811. Link
  • Andreo CS, Drincovich MF, Maurino VG and Spampinato CP (1996). C4 plant photosynthesis: Malate decarboxylation by NADP-malic enzyme. 1995 TWAS Award in Biology, 90–116.
  • Maurino VG, Drincovich MF and Andreo CS (1996) NADP-malic enzyme isoforms in maize leaves. Biochem. Mol. Biol. Int. 38, 239–250. Link
  • Madhavan S, Andreo CS, Maurino VG and O'Leary M (1996) In situ localization of NADP-malic enzyme in bundle-sheath cells and leaf carbon isotope fractionation in two C4 grasses. Int. J. Plant Sci. 157, 118–122. Link
  • Drincovich MF, Maurino VG, Casati P, Andreo CS, Ku M, Edwards G, Tarlying N and Fransceschi V (1995) NADP-malic enzyme: immunolocalization in different tissues of C3 and C4 plants. Photosynthesis: from light to Biosphere, Vol. V, 325–328. P. Mathis (ed). Kluwer Academic Publishers, The Netherlands.
  • Andreo CS, Drincovich MF and Maurino VG (1995) Expression of NADP-malic enzyme isoforms during the greening of etiolated maize seedlings. Photosynthesis: from light to Biosphere, Vol. V, 115–118. P. Mathis (ed). Kluwer Academic Publishers, The Netherlands.

Wird geladen